Early detection of COPD Exacerbations Using Remote Monitoring and a Machine Learning Risk Score: A Validation Study

F. Tilquin¹, S. Le Liepvre¹, S. Balbolia¹, M. Pirotais¹, Y. Le Guillou¹, J.C. Cornu², N. Roche³⁴, G. Criner⁵, M. Joyeux-Faure⁶, J.L. Pépin⁶

¹Biosency, France – ²Verdun Hospital, France – ³Hôpital Cochin, AP-HP, Université Paris Cité, France – ⁴INSERM U 1016, France – ⁵Temple University, USA – ⁶Université Grenoble Alpes, INSERM U 1300, France

Introduction

- Acute exacerbations of COPD (AECOPD) drive disease progression, hospitalizations, and mortality¹.
- Early detection is critical to enable timely interventions, but remains a major challenge².
- Remote monitoring and artificial intelligence (AI) open new perspectives for proactive COPD care³.
- The BVS³ risk score, a transparent machine learning-based score, integrates daily variations of oxygen saturation (SpO₂), breathing rate (BR), and heart rate (HR).

Objectives

- Validate the predictive performance of the BVS³ risk score for early detection of AECOPD.
- Assess patient adherence to long-term continuous monitoring.
- Evaluate lead time, accuracy, sensitivity, and specificity compared to physician-confirmed exacerbations.

Methods

- Study design: retrospective analysis on data collected in the eMEUSE-SANTÉ (NCT04963192), monocentric prospective observational trial France (2021–2024).
- Population: 220 COPD patients monitored for 6 months.
- Device: Bora band® CE-certified wristband (Class IIa) measuring SpO₂, BR, HR continuously.

- BVS³ score: computed from Z-scores of vital signs.
- Outcomes: Performance of BVS³ vs. physician-validated exacerbations.
- Analysis: AUC-ROC, accuracy, sensitivity, specificity, anticipation time.

eMEUSE-SANTÉ 6-month follow-up

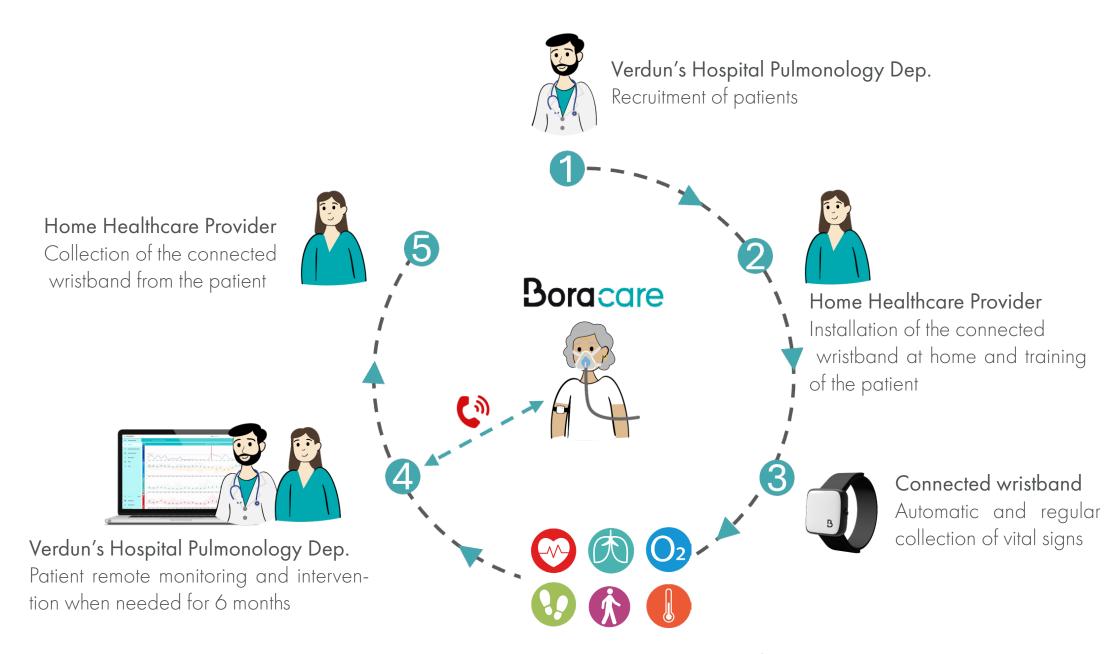


Fig 1 Description of the eMEUSE-SANTÉ study flow

Results

Population & Data

N = 220 COPD patients (63 ± 8 yrs, 55% male, GOLD II–III predominant).

36,375 monitoring days analyzed.

Median adherence: 86%.

42 AECOPD (7 severe, 35 moderate) in 39 patients.

Prediction performance (fig 2)

AUC = 0.94 (severe), 0.88 (all events). Sensitivity 86%, 94% specificity (severe events). Accuracy 84.8%, sensitivity 74%, specificity 85% (all events). Anticipation: Mean 4.4 ± 3.1 days before clinical confirmation.

Comparison with Single vital signs (fig3)

HR (AUC 0.83), BR (0.82), SpO₂ (0.71).

Composite BVS³ consistently outperformed individual metrics

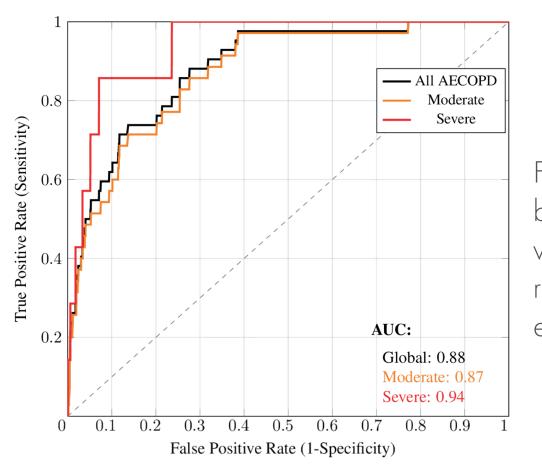
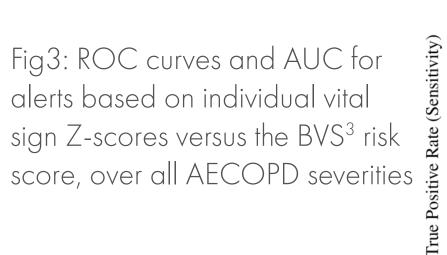
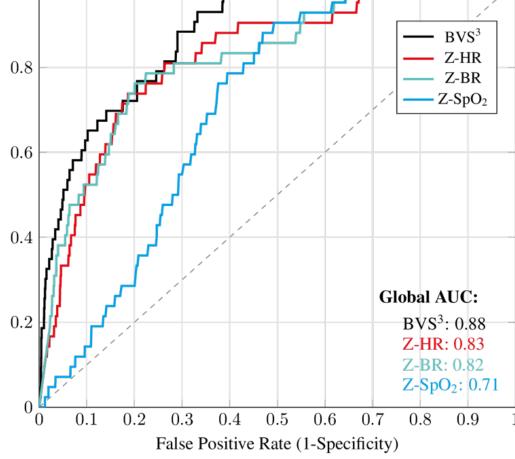




Fig2 ROC curves and AUC for alerts based on the BVS³ risk score (red: se vere AECOPD events, orange: moderate AECOPD events, black: all events).

Conclusion

- BVS³ enables early, accurate, and interpretable detection of COPD exacerbations.
- High acceptability and adherence to continuous remote monitoring.
- Anticipation of ~4 days provides a valuable window for proactive intervention.
- This scalable, digital approach may transform COPD management and improve outcomes.

¹Safiri S et al. BMJ; 2022, PMID:35896191 ²MacLeod M et al Respirol Carlton Vic 2021 532–551. PMID:33893708 ³Wu C-T et al JMIR MHealth UHealth 2021 PMID:33955840